Scientific Paper on Plasma Surface Oxidation of In2O3 by Paul-Drude-Institut

January 2, 2017 Samco 2016 Customer, In2O3, Plasma Treatment, Samco Customer Publication, Surface Treatment

Consequences of plasma oxidation and vacuum annealing on the chemical properties and electron accumulation of In2O3 surfaces

Theresa Berthold1, Julius Rombach2 Thomas Stauden1 Vladimir Polyakov3
Volker Cimalla3 Stefan Krischok1 Oliver Bierwagen2 and Marcel Himmerlich1
1 Institut fur Mikro- und Nanotechnologien MacroNano, Technische Universit€at Ilmenau, PF 100565, 98684 Ilmenau, Germany
2 Paul-Drude-Institut fur Festk€orperelektronik, Hausvogteiplatz 5–7, 10117 Berlin, Germany
3 Fraunhofer-Institut fur Angewandte Festk€orperphysik, Tullastraße 72, 79108 Freiburg, Germany
Journal of Applied Physics 120, 245301 (2016)

Indium Oxide (In2O3) is used for metal contacts of electronic devices. It is known that defects (oxygen vacancies) and impurities (adsorbates) of In2O3 films change electron concentration. In previous papers, surface treatment techniques using plasma technologies were investigated to reduce the defects and impurities of In2Ofilms.

In this paper, Samco ICP plasma etching tool at Paul-Drude-Institut was used for plasma surface oxidation of In2O3, and the samples were treated by subsequent vacuum annealing. It was found that oxygen plasma treatment reduced adsorbed carbon impurities and removed surface defect states, attributed to oxygen vacancies.