Scientific paper on PV/thermoelectric conversion system by Yokohama National University team

September 12, 2017 Samco 2017 Customer, SAMCO Customer Publication, Solar Cell

Design concept of a hybrid photo-voltaic/thermal conversion cell for mid-infrared light energy harvester

Yoshiaki Nishijima1, Ryosuke Komatsu1, Takuya Yamamura1, Armandas Balčytis2,3, Gediminas Seniutinas2,4, and Saulius Juodkazis2,5,

1 Department of Electrical and Computer Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
2 Nanotechnology Facility, Centre for Micro-Photonics, Swinburne University of Technology, John St., Hawthorn, Victoria 3122, Australia
3 Institute of Physics, Center for Physical Sciences and Technology, 231 Savanoriu̧ av., LT-02300 Vilnius, Lithuania
4 Paul Scherrer Institute, Villigen CH-5232, Switzerland
5 Melbourne Centre for Nanofabrication, ANFF, 151 Wellington Road, Clayton VIC 3168, Australia
Optical Materials Express 7, 10, pp. 3484-3493 (2017)

Typical silicon-based solar cells have limitation on conversion efficiencies especially at IR wavelengths. Utilization of IR spectra and thermal parts is critical to increase the total efficiency of the solar cells. In this research, a hybrid photovoltaic/thermoelectric conversion system was proposed to maximize conversion efficiencies. Samco ICP-RIE System, RIE-101iPH was used to form black silicon (b-Si) on a silicon substrate.

Top