Category: NEWS

16 Sep

Samco launches new PECVD and ALD facility to support growth of deposition and coating business

Samco NEWS

Samco, a leading manufacturer of plasma processing equipment for the compound semiconductor industry, has announced the opening of its new Plasma Enhanced Chemical Vapour Deposition (PECVD) and Atomic Layer Deposition (ALD) demonstration facility at Samco’s headquarters, Kyoto.

Samco’s PECVD and ALD equipment are widely used in the manufacturing of optoelectronic and electronic devices. The positive outlook and the rapid growth of the 5G & IoT markets have fueled demand for PECVD and ALD process equipment for fabrication of communication devices and semiconductor lasers.

“This new facility is of strategic importance to Samco as it will enable further revenue growth in the compound semiconductor market. There will be ten PECVD and ALD systems for demonstration in the class 1000 cleanroom space of 217.61 m2,” says Tsukasa Kawabe, Samco’s President and COO.

“The facility will greatly strengthen our ability to develop future process applications and technologies with our customers across the globe. The volume of demonstration tests requested by customers that can be handled is expected to be more than double the current level. Moreover, our customers and partners could collaborate with us in prototyping and pilot-line production utilizing the new facility,” he adds. “In particular, we are planning on conducting joint research and development projects with universities, research institutes, companies, and other external parties more aggressively than ever.”

Samco was founded in 1979 as a specialized manufacturer of PECVD equipment and in recent years has significantly expanded the sales of dry etching equipment for demanding applications, mostly for the compound semiconductor market.

“Samco’s three pillars of core technology are deposition, etching, and surface cleaning. We will leverage this new facility to further expand sales of the PECVD and ALD systems,” says Kawabe.

01 Sep

High Performance In-situ Monitoring System for ICP Dry Etching

Samco NEWS

Introduction

Laser interferometric spectra and plasma emission spectra are widely used to realize precise dry etching depth control of compound semiconductor devices. However, fixed wavelength light sources for the laser interferometric systems are limited to analyze end point detection signals. Our ICP dry etching systems such as the RIE-400iP, and RIE-800iP are equipped with a highperformance in-situ monitoring system that can analyze multiple wavelengths from the reflected light of Xe or Xe-Hg (or Halogen lamp). The system is also capable of detecting the variation of plasma emission intensity simultaneously. In this work, we present examples of applying the high-performance in-situ monitoring system to GaAs, InP, and GaN-based device structure etching, and discuss the possibility of highly accurate and stable etching depth control.

To continue, please submit the form.

Download Abstract of CS MANTECH 2020

05 May

Technical Report : GaN Etching for MiniLED and MicroLED Applications

Samco 2020 NEWS, NEWS, Technical Report

Introduction

Over the last year, next-generation microLED displays have begun to surpass the conventional liquid crystal and organic EL displays, and are starting to attract more and more attention from industry leaders. While the exact definition of microLED hasnʼt been decided by the display industry, “microLED” typically refers to an LED chip with side lengths of 100 microns down to several microns. LED chips in the 100 to 200 micron range, such as those used in Samsungʼs famous The Wall, are typically referred to as “miniLEDs.”

Like traditional LEDs, microLED chips have rows and columns of semiconductor structures which emit a combination of red, green or blue light to produce a wide range of colors. The materials used as the semiconductor elements in an LED chip determine their color. The most commonly used materials are InGaN for green, blue and white LEDs and AlGaInP for red, orange and yellow LEDs. Gallium nitride (GaN) is an excellent semiconductor material for LEDs because of its direct bandgap, high electron Samco’s Solution for Micro LEDs mobility and thermal conductivity. By mixing GaN with a small percentage of indium nitride (InN) it is possible to tune the band gap to efficiently emit green, blue or white light.

At submillimeter sizes, microLED chips can be fabricated and put into arrays to be used as individual RGB pixels in TV and smartphone displays with higher brightness and lower power consumption than ever before. MicroLEDs also have near perfect black levels which, when paired with their brightness, means an excellent contrast ratio making them ideal for high dynamic range (HDR), augment reality (AR) displays and heads-up displays (HUD). Of course, with new technological breakthroughs there are always some hurdles to overcome. For microLED technology the largest challenge is finding cost effective methods to produce displays with millions of microLEDs. Another critical factor when an LED shrinks is the defect density. It has been demonstrated that the impact of sidewall defects, generated during the etching process, on device performance cannot be ignored for LEDs at the micro-level size. This is due to the increased importance of Shockley-Read-Hall recombination as the size of GaN-based LEDs shrink. On the other hand, microLEDs with perfectly fabricated sidewalls actually see an increase in efficiency as they decrease in size.

The challenge of GaN etching is that the tight crystalline bond strengths in group III nitride materials are what gives them attractively wide bandgaps, but it also makes the material chemically inert and difficult to etch. In particular, there is difficulty in obtaining smooth etched sidewalls because of the inherent generation of damage inducing ions in dry etching processes.6 To address this, Samco uses an inductively coupled plasma reactive ion etching (ICP-RIE) process with chlorine-chemistry which can achieve high etch rates for mesa etching while maintaining smooth and highly anisotropic sidewalls.

To continue, please submit the form.

Download Technical Report

24 Mar

Technical Report : New Etching and Deposition Approach for Trench-Type SiC MOSFET

Samco 2020 NEWS, NEWS, Technical Report Tags: , , , , ,

Introduction

Compared to the mainstream semiconductor Si, the wide bandgap semiconductor 4H-SiC has excellent material qualities including higher electrical breakdown strength and higher thermal conductivity.Therefore, 4H-SiC has been studied in recent years as a new material to improve miniaturization and energy saving in power devices. Currently, it is being developed not only for device fabrication but also for practical
applications in the automotive and power supply industries. SiC MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) are one example of commonly used 4H-SiC power devices that surpass Si power devices in terms of high voltage endurance, low on-resistance, and high-speed switching. Trench type SiC MOSFETs are being developed and have shown that they are capable of achieving a reduced on-resistance, which is highly demanded in current devices. We have been developing a trench etching process using plasma dry etching and deposition of the gate insulator using ALD (Atomic Layer Deposition) and PECVD (Plasma Enhanced Chemical Vapor Deposition). These processes are required for manufacturing trench type SiC MOSFETs.
In this paper, we will highlight the SiC trench etching and gate insulator deposition results.

To continue, please submit the form on the right.

Download Technical Report

20 Nov

Deputy Prime Minister of Liechtenstein Meets with Samco Chairman and CEO Osamu Tsuji

Samco 2016 NEWS, NEWS

Deputy Prime Minister of Liechtenstein Thomas Zwiefelhofer invited Samco Chairman and CEO Osamu Tsuji, samco-ucp President Christian Linder and samco-ucp Director Nakanobu Seki to the country’s government building in Vaduz at the beginning of November in order to express his gratitude to Samco for making Liechtenstein its sales and service base in Europe through its subsidiary samco-ucp.

READ MORE

03 Aug

Samco opens new office in Malaysia, strengthens presence in Southeast Asia

Samco 2016 NEWS, Latest, NEWS

Samco, a semiconductor process equipment developer and manufacturer based in Japan, announced that it will open its Malaysia branch office on Aug. 10, 2016 in Petaling Jaya, a suburb of Kuala Lumpur.

“With our new office conveniently located near Kuala Lumpur, we expect to better serve Malaysia’s research universities and manufacturers,” says Osamu Tsuji, Samco’s chairman, president and CEO.  “Four company representatives will be assigned to this new location, where they will actively provide production-type systems and services, consisting of the three major technologies Samco specializes in.”

READ MORE

20 Jun

Samco boosts shipment capacity with second production center

Samco 2016 NEWS, Latest, NEWS

Samco, a Japan-based semiconductor processing equipment manufacturer, held a completion ceremony for its second production center on June 17.  The new production center, which began construction in January and is expected to begin operations during the fall of this year, boosts Samco’s original shipment capacity of 6-7 billion yen per year to a total of 10-11 billion yen per year.

READ MORE

13 Apr

Samco increases local sales staff for North American, European and Asian locations, aims to expand overseas sales

Samco 2016 NEWS, Latest, NEWS

Samco is employing around 20 more people at its locations in North America, China, Taiwan and Singapore, as well as its subsidiary Samco-UCP in Liechtenstein, in order to better provide services and support to overseas customers.

“Increasing the number of Samco employees abroad is part of the company’s larger strategy to optimize our current sales structure while actively growing our customer base across the globe,” says Osamu Tsuji, Samco’s President, Chairman and CEO.

READ MORE

09 Feb

SAMCO MEMS Workshop at IIT Bombay, India

Samco 2016 NEWS, Latest, NEWS

SAMCO held its first thin film technology workshop in India at the Indian Institute of Technology Bombay on February 2nd. The event, entitled “MEMS and Nano Processes”, was a collaboration with Professor V. Ramgopal Rao of IIT Bombay’s Electrical Engineering Department.

“With a growing economy that is expected to accelerate in the future, India continues to set an example for emerging markets around the world through its innovative research and development activities,” said Osamu Tsuji, SAMCO’s President, Chairman and CEO, during his opening remarks at the workshop.

READ MORE

Top